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Abstract

Light field has great applications in AR/VR. It is particu-
larly useful for resolving the vergence-accommodation con-
flict (VAC) and creating correct depth cues for AR/VR dis-
plays. However, the source data, especially light field video,
are not widely available yet. To resolve the scarcity is-
sue, one may resort to data such as stereo image sequences
that are commonly available. In this paper, we propose an
end-to-end deep learning framework for synthesizing light
field sequences from stereo image sequences. Our frame-
work consists of a disparity estimation network, a guided
synthesis network, and a refinement network and is able
to resolve the flickering issue caused by temporal incon-
sistency, an artifact that is commonly seen in synthesized
light field videos. Our experimental results are quantita-
tively and qualitatively better than the results of existing
light field synthesis algorithms that were originally devel-
oped for static light fields.

1. Introduction

Recently, light field display has received considerable at-
tention in both academia and industry. Because the light
field simulates light rays perceived by human eyes in a
real scene, a realistic and comfortable viewing experience
is made possible with light field displays such as a pair of
light field glasses. Such displays are free of the vergence-
accommodation conflict (VAC) that is the root cause of nau-
sea or dizziness for users of conventional AR displays.

A light field can be represented as a 2D array of sub-
images. The height and width of the 2D array are referred to
as the angular resolution of the light field in the correspond-
ing dimension, while the size of the sub-images is referred
to as the spatial resolution of the light field. In other words,
a light field carries the intensity and direction information
of all light rays of a scene it represents.

However, due to cost and hardware limitations, high an-
gular and spatial resolution light fields are difficult to obtain.

This is especially the case for light field videos. Therefore,
various solutions for light field synthesis have been devel-
oped to generate dense sub-images from a sparse light field.
With advanced neural networks, it is even possible to syn-
thesize a 9 x 9 light field from a stereo image pair or a single
image.

In consideration of accessibility and quality, synthesiz-
ing a light field video from a stereo image sequence is a
practical choice. Although stereo video data are more costly
to obtain than monocular video data, they contain depth in-
formation useful for creating high-quality light fields.

An intuitive way to synthesize a light field video from
a stereo video is to consider the stereo video input as a se-
quence of stereo image pairs and convert each stereo image
pair to a light field. However, this may create unwanted
artifacts, since it does not consider the temporal relation-
ship between the stereo image pairs. Temporal inconsis-
tency may lead to video flickering. This is usually the case
for warping-based light field synthesis, which create light
fields by using the disparity maps to warp input images. The
occlusions and holes commonly seen in warped images can
lead to noticeable flicker, especially if the stereo input has a
large baseline.

In this paper, we propose a flicker-free light field video
synthesis pipeline that takes a stereo sequence as input. This
end-to-end learning-based synthesis approach consists of
three components: a disparity estimation network, a guided
synthesis network, and a refinement network.

First, we generate light fields with the input stereo pairs
and disparity maps estimated from the disparity estimation
network, similar to how light fields are synthesized using
warping-based methods. However, instead of taking the
warped light fields as the output, we use them as guidance
to train a separate synthesis network, which generates light
fields without image warping. The generated light fields are
then refined by the refinement network, which is a 3DCNN
that utilizes spatial-angular information. To further reduce
the flicker that often occurs in the synthesized light field
videos, we impose an optical flow loss to ensure the tempo-
ral consistency of the synthesis pipeline.



2. Related Work

2.1. Light Field Synthesis

Light field view synthesis or view interpolation, refers to
the generation of new sub-images from a sparse light field or
even a single image. Over the years, many view synthesis
approaches have been developed, with the most common
ones being depth or disparity-based methods and multiplane
image (MPI)-based methods.

Among the depth or disparity-based light field synthe-
sis methods, Kalantari ef al. [10] generated novel views
from 2 x 2 light field images by employing a learning-based
method that estimates disparity features from the input and
uses them to generate novel views. Chao et al. [6] further
proposed an end-to-end learning-based method that creates
a9 x 9 light field from stereo images by utilizing the left-
right consistency of stereo images. Moreover, Srinivasan et
al. [15] developed a depth-based light field synthesis net-
work for view synthesis from a single RGB image. How-
ever, this method heavily depends on the quality of the esti-
mated depth and the color information of the image.

The method proposed by Zhou et al. [22] synthesizes a
horizontal light field image from a stereo image with a small
baseline using the MPI representation, which is a multi-
layered image representation with each layer being a 4D
RGBA image that represents scenes and objects at different
depths. However, to generate novel views, this method usu-
ally requires two or more input images and camera param-
eters, which are more difficult for users to provide. More-
over, the inference of MPI and the rendering of novel views
are time-consuming, making it difficult to synthesize light
field images.

2.2. Light Field Video Synthesis

Compared to light field image synthesis, light field video
synthesis needs to consider temporal consistency between
each video frame. Bemana et al. [4] suggested the concept
of an X-Field, which is a set of 2D images taken across dif-
ferent views, time, or illumination conditions. With the help
of neural networks, it is possible to create joint view, time,
or light interpolation. Bae et al. [3] proposed a learning-
based method for synthesizing a light field video from a
monocular video using an optical decoder to refine the tem-
poral consistency. Shedligeri er al. [14] also proposed a
learning-based method for synthesizing light field videos
from stereo videos. It utilizes a low-rank light field rep-
resentation based on layered light field displays [20] as well
as a recurrent means to estimate both disparity and optical
flow.

3. Method

In this section, we describe the proposed method for light
field video synthesis and the associated loss terms.

3.1. Light Field Synthesis

We denote the input left stereo image by I; and the input
right stereo image by I,.. A light field, denoted by F, is
an N x N x H x W x 3 tensor, where N x N denotes
the angular resolution and I x W the spatial resolution
of the light field. A sub-view in the light field is denoted
by F(i,j), where (i,5), 0 < i,j < N, are the angular
coordinates of the sub-view.

In the first step of our framework, disparity maps for
guiding light field synthesis are generated from input stereo
image pair by the disparity estimation network d. Specif-
ically, the disparity estimation network takes I; and I, in
order as input and outputs an H x W left-to-right dispar-
ity map Dy, = d(I;, ) and a right-to-left disparity map
D,; = d(I,, I) of the same dimension. To make the two
disparity estimates smoother, we utilize a total variation loss
L, [16], [21] as follows:

Ly = VD [l1 + [V Drtl]1. (M

Once Dy, and D,; are obtained, we backward warp I; and
I to every sub-view L(i,7). We denote the light field
warped from I; by F; and the light field warped from I,
by F). and impose a left-right consistency loss L. similar to
Chao et al. [6] as follows:

Le=[|Fi = Bl + 1By = Fillu + 1B = Fills ()

where F; denotes the ground truth light field. After F; and
F,. are obtained, we apply a distance-weighted blending
method [6] to merge F; and F;. into a guidance light field
F, which is used in the next step to train the synthesis net-
work and the refinement network.

We train the synthesis network to generate a light field
similar to the guidance light field F;. Our synthesis net-
work, denoted by s, takes I; and I, as input and outputs a
light field F; = s(I;, I,.). Then we apply a guidance loss,

Ly = [[Fs = Fyllx, 3)

to make F similar to F.

Finally, we feed the light field generated by the syn-
thesis network into a refinement network that utilizes
spatial-angular information to handle occlusions and non-
Lambertian surfaces. The synthesized light field Fj is re-
shaped into an N x N x H x W x 3 tensor before it is
fed to the refinement network. The refinement network, de-
noted by r, is a 3DCNN [15] that takes F§ as input and
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Figure 1. Flow chart of our proposed framework for light field video synthesis, which consists of a
disparity network, a synthesis network, and a refinement network. The disparity network generates
disparity maps for guiding light field synthesis, and the refinement network takes the synthesized
light field as input and outputs the final predicted light field.

outputs a predicted light field F}, by employing the recon-
struction loss,

Lr:HFp_Fth “)

to minimize the distance between the predicted light field
F}, and the ground truth light field F.

3.2. Temporal Consistency

We denote the input stereo pair at time ¢ by I?, which
consists of the left stereo image and the right stereo image.
That is, I* = (I},I!). We compute the optical flow from
time ¢ to time ¢ — 1 by an optical flow estimation network o

(171,

O(It7.[t_1) — ft—>t—17 (5)

where fi=*~1 consists of both left and right optical flows
estimated from time ¢ to time ¢ — 1.

We apply a backward warping operation W to warp the
stereo image pair at time ¢ — 1 to the stereo image pair at
time ¢,

W(It—17ft—>t—1) — It—l—Hf, (6)

where I'~17* denotes the stereo image pair backward
warped from time ¢ — 1 to time ¢. An optical flow loss L is
imposed to ensure that the backward warped stereo image
pair and the stereo image pair at time ¢ synthesize a similar
light field,

Ly =|s(I") = s(I'""'7")|x. 7

The total loss L is a weighted sum of the loss terms in
Egs. (1), (2), (3), (4), and (7). That is,

L=w, Ly+w. -Le+wy-Ly+w,-L.+wys- Ly (8)

where w denotes the weighting of each loss term.The over-
all flow chart of the proposed method is shown in Figure
1.

3.3. Implementation Details

To achieve efficiency, we implement a lightweight dis-
parity estimation network with an architecture similar to
that proposed by Chao et al. [6]. The synthesis network
is a U-Net [13] with six input channels for input stereo im-
age pairs and N x N x 3 output channels to generate light
fields with V x N angular resolution. A tanh function is
applied in the last layer of the disparity estimation network
and the refinement network to normalize the output and sta-
bilize the training procedure. We adopt ELU [7] as the acti-
vation function in the disparity estimation network and the
refinement network.

Our networks are trained on the HCI 4D Light Field
Dataset [9] and the Stereo Ego-Motion Dataset [2]. The
HCI dataset, which consists of 24 light fields, is split by 5:1
into training and testing sets for light field synthesis train-
ing. The Stereo Ego-Motion Dataset is a real-world stereo



video dataset, from which four stereo videos are randomly
chosen for temporal consistency training. All networks are
trained by using the Adam optimization algorithm [11] with
default parameters and with w,, = 0.001, w, = 1, wy, = 1,
w, = 1, and wy = 0.005.

4. Experiments and Results

We perform both quantitative and qualitative compar-
isons to evaluate the proposed method. For quantitative
comparison, we compare the proposed method with Chao et
al. on two datasets: Hybrid light field video dataset [19] and
Raytrix light field video dataset [8]. The former consists of
light field videos with 8 x 8 angular resolution and 352 x 512
spatial resolution, and the latter consists of light field videos
with 5x 5 angular resolution and 1080 x 1920 spatial resolu-
tion. For qualitative comparison, we evaluate the proposed
method on the testing sequences randomly selected from the
Stereo Ego-Motion dataset [2]. We conduct qualitative ex-
periments on this real-world stereo video dataset to evaluate
the generalizability of the proposed method.

4.1. Quantitative Results

We adopt peak-signal-to-noise ratio (PSNR) and struc-
tural similarity (SSIM) as metrics to evaluate the perfor-
mance of our method on the task of light field video re-
construction. We first extract stereo sequences from the
ground truth light field videos. Then we apply different
light field synthesis methods to reconstruct light field videos
from the stereo sequences. Finally we compute PSNR and
SSIM of the reconstructed light field videos against the
ground truth light field videos. Table 1 shows the PSNR
and SSIM values of the reconstructed light field videos. A
higher PSNR or SSIM indicates a better similarity between
the reconstructed light field videos and ground truth light
field videos. Our method has better performance in terms
of PSNR and is comparable in terms of SSIM.

The temporal consistency of the reconstructed light field
videos is evaluated by using a warping loss [14]. We first
predict the optical flow between adjacent ground truth light
field video frames using an optical flow estimation network
[18]. Once the optical flow is obtained, we backward warp
adjacent predicted light field video frame using the pre-
dicted optical flow and compute the mean absolute error
(MAE) of the backward warped frames with respect to the
original frames. Table 2 shows the MAE of each method.
The lower the MAE, the better the temporal consistency is.
Our predicted light field videos have slightly better tempo-
ral consistency.

Datasets Hybrid Raytrix
Metrics PSNR SSIM PSNR SSIM
Chao et al. 34.29 0.964 35.46 0.961
Ours \ 34.62 0.957 \ 37.66 0.965

Table 1. Quantitative comparison of light field
video reconstruction. The bold numbers in-
dicate the best results.

Datasets Hybrid Raytrix
Metric MAE MAE
Chao et al. 0.0178 0.0208
Ours \ 0.0174 \ 0.0204

Table 2. Quantitative comparison of temporal
consistency. The bold nhumbers indicate the
best results.

4.2. Qualitative Results

Examples of the refocused views and sub-views gener-
ated by our method and the methods of Shedligeri er al and
Chao et al are shown in Figure 2 for qualitative comparison.
It can be seen that our refocused views are sharper than the
refocused views of Shedligeri ef al. and Chao et al. In addi-
tion, we can observe that our method generates distortion-
free sub-views, but the sub-views generated by Shedligeri ef
al. and Chao et al. have a certain degree of distortion. Fur-
thermore, we observe that the distortion is the root cause of
video flickering. A Comparison of the quality of our syn-
thesized light field video with the other methods is provided
on YouTube [1]. The qualitative comparison shows that our
method performs well for real-world stereo sequences. It
also shows the effectiveness of our synthesis network and
disparity guidance for light field video synthesis.

4.3. Ablation studies

We conduct ablation studies to evaluate the influence of
the loss terms, the blending method, and the refinement net-
work of our light field video synthesis framework. First,
we evaluate the effectiveness of total variation loss, left-
right consistency loss, and guidance loss by setting, one by
one, their weight to zero. Then we evaluate the performance
of the distance-weighted alpha blending method with other
blending methods. Finally, we evaluate the effectiveness of
our refinement network. All ablation studies are tested on
the Hybrid dataset [19]. From the results in Table 3, we
verify that the loss terms, the blending method, and the re-
finement network are all effective components of our frame-
work.
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Figure 2. Qualitative comparison of refocused views and sub-views. We compare the visual quality
of refocused views and sub-views with Shedligeri et al. and Chao et al. Our refocused views are
sharper and our sub-views are distortion-free.



Method PSNR SSIM

Ours (w/o total variation loss) 34.59 0.959
Ours (w/o consistency loss) 33.62 0.943
Ours (w/o guidance loss) 32.86 0.930
Ours (only left view) 34.58 0.952
Ours (only right view) 30.40 0.910
Ours (average blending) 33.89 0.951
Ours (w/o 3DCNN) \ 31.04 \ 0.910
Ours (full model) | 3462 | 0957

Table 3. Ablation studies of our framework.
The bold numbers indicate the best perfor-
mance.

5. Conclusion

We have described a learning-based framework to syn-
thesize light field videos from stereo sequences. Unlike
conventional warping-based light field synthesis methods
that take warped light fields as the output, the proposed
disparity-guided framework takes the warped light field as
a guidance to train a synthesis network, which generates
light fields without image warping. As a result, our frame-
work is able to avoid distortions caused by inaccurate dis-
parity estimate. Furthermore, we take temporal consistency
between video frames into consideration in our light field
video synthesis framework and generate light field videos
that are sharper and less flickering than those generated by
warping-based methods.
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